PYQsolver
Maths
Blogs
Class 10 Introduction to Trigonometry Previous Year Questions
Home
›
maths
›
intro to trigonometry
Q1:
Prove that: \(\frac{sinθ}{1 + cosθ}\) + \(\frac{1 + cosθ}{sinθ}\) = 2 cosecθ
View Solution
CBSE [2023]
Easy
Q2:
Prove that: \(\frac{1 + secA}{secA}\) = \(\frac{sin²A}{1 - cosA}\)
View Solution
CBSE [2023]
Easy
Q3:
Prove that: \(\frac{tanθ}{1 - cotθ}\) + \(\frac{cotθ}{1 - tanθ}\) = 1 + secθcosecθ
View Solution
CBSE [2023]
Medium
Q4:
Prove that: \(\sqrt{\frac{secA - 1}{secA + 1}}\) + \(\sqrt{\frac{secA + 1}{secA - 1}}\) = 2cosecA
View Solution
CBSE [2023]
Medium
Q5:
If acosθ + bsinθ = m and asinθ - bcosθ = n, then prove that a² + b² = m² + n².
View Solution
CBSE [2023]
Medium
Q6:
Prove that: secA (1 – sin A) (sec A + tan A) = 1.
View Solution
CBSE [2023]
Medium
Q7:
Prove that: \(\frac{sinA - 2sin³A}{2cos³A - cosA}\) = tanA
View Solution
CBSE [2023]
Medium
Q8:
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
View Solution
CBSE [2023]
Easy
Q9:
Evaluate: \(\frac{5cos²60° + 4sec²30° - tan²45°}{sin²30° + cos²30°}\)
View Solution
CBSE [2023]
Easy
Q10:
secθ when expressed in terms of cotθ, is equal to: (a) \(\frac{1 + cot²θ} {cotθ}\) (b) \(\sqrt{1 + cot²θ}\) (c) \(\frac{\sqrt{1 + cot²θ}}{cotθ}\) (d) \(\frac{\sqrt{1 - cot²θ}}{cotθ}\)
View Solution
CBSE [2023]
Easy
Q11:
Prove that: (\(\frac{1}{cosθ}\) - \(\cosθ\)) (\(\frac{1}{sinθ}\) - \(\sinθ\)) = \(\frac{1}{tanθ + cotθ}\)
View Solution
CBSE [2023]
Easy
Q12:
If cosA + cos²A = 1, then find the value of sin²A + sin⁴A.
View Solution
CBSE [2023]
Easy
Q13:
If 4cot²45° - sec²60° + sin²60° + p = \(\frac{3}{4}\), then find the value of p.
View Solution
CBSE [2023]
Easy
Q14:
Prove: \(\frac{tanθ + secθ - 1}{tanθ - secθ + 1}\) = \(\frac {1 + sinθ}{cosθ}\)
View Solution
CBSE [2023]
Easy
Q15:
If sinα = \(\frac{1}{√2}\) and cotβ = √3, then find the value of cosecα + cosecβ
View Solution
CBSE [2023]
Easy
Q16:
If sinθ + cosθ = \(\sqrt{3}\), then find the value of sinθ × cosθ
View Solution
CBSE [2023]
Easy
Q17:
If 2tanA = 3, then find the value of \(\frac{4sinA + 3cosA}{4sinA - 3cosA}\)
View Solution
CBSE [2023]
Easy
Chapters
Real Numbers
Polynomials
Pair of Linear Equations in Two Variables
Quadratic Equations
Arithmetic Progressions
Coordinate Geometry
Triangles
Circles
Introduction to Trigonometry
Some Applications of Trigonometry
Areas Related to Circles
Surface Areas and Volumes
Statistics
Probability